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ABSTRACT

A technique is presented for solving the inverse dynamics of flexible
planar multibody systems. This technique yields the non-causal joint efforts
(inverse dynamics) as well as the intemal states (inverse kinematics) that pro-
duce a prescribed nominal trajectory of the end effector. A non-recursive glo-
bal Lagrangian approach is used in formulating the equations of motion as well
as in solving the inverse dynamics equations. Contrary to the recursive method
previously presented, the proposed method solves the inverse problem in a sys-
tematic and direct manner for both open-chain as well as closed-chain
configurations. Numerical simulation shows that the proposed procedure pro-
vides an excellent tracking of the desired end effector trajectory.

1. Introduction

Accurate positioning and vibration minimization of flexible multibody systems have gen-
erated considerable interest from the computational dynamics and controls communities. The
advent of the new generation of very fast, lightweight robots and flexible articulated space
structures has made the control of structural vibrations an important practical problem in the
manufacturing and space industries.

There is a large body of literature dealing with the forward dynamic analysis of flexible
multibody systems, i.e., determining the resulting motion when the joint forces and extemnal
forces are given. Numerous approaches have been proposed that are either based on the mov-
ing frame method or the inertial frame counterpart (see reference [1] and references therein.)
Similarly, numcrous control approaches have also becn proposed for position and vibration
control of flexible articulated structures (see reference [2] and references therein.)

Solutions to the non-collocated control of flexible articulated structures have been
presented in [3-6]. The so-called inverse dynamics joint actuation are non-causal or time-
delayed joint torques (applied in negative time and future time) that are capable of positioning
the end effector according to a desired trajectory. The importance of using the inverse dynam-
ics approach to vibration control has been demonstrated recently in reference [7] where passive
feedback and feedforward of the inverse dynamics torque were used to achieve an exponen-
tially stable tracking control law that yields excellent end-point tracking of flexible articulated
structures. In this paper, present a global Lagrangian approach to the solution of vibration
minimization and end-point trajectory tracking.
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2. Mathematical Formulation

In order to describe the dynamic modeling let us consider a generic flexible body (Fig. 1)
representing a component of a flexible articulated structure. The configuration of the mult-
body system can be described by two sets of coordinates: the first set corresponds to the rigid
body coordinates representing the location and orientation of the body axes, with respect to the
inertial frame; and the second set corresponds to the so-called deformation coordinates or nodal
deformations representing the deformation of the body with respect to the body axes. Using
the aforementioned choice of coordinates, the location of an arbitrary point P in a planar
deformable body ¢ is given by )

r =R' +A' v (D
where R is the location of the origin of the body axes with respect to the inertial frame, u' is

the location of point P with respect to the body axes, and A' is the rotation transformation
matrix from the body axes to the inertial frame. In the three-dimensional case, the rotation

transformation matrix is given by
|20 + 81 -1 2816, — 868y) 2(8,0; + 840, |’
Al = 206,06, + 858;) 2(68 +67) — 1 2(8,65 — 648,) 03]
2(8,03 — 6002) 2(8,05 + 608)) 2(6 + 6F) — 1
where the orientation coordinates are represented by four Euler parameters 04, 6§, 64, and 04
which satisfy the following identity:

5 @) =1
k=0
The vector u’ can be decomposed into
u' =u/ +uf 3)
where u/ is the position vector of point P in the undeformed state with respect to the body

axes, and uy is the deformation vector of point P with respect to the body axes. Differentiating
Eq. (1) with respect to time yields the velocity vector of point P

F=R +A u +A" 4 )
where () represents differentiation with respect to time. To separate the generalized coordi-
nates, the second term on the right hand side of Eq. (4) may be written as

Alu=-2A"d E @ (5)
where E’ is a matrix that depends lincarly on the Euler parameters and is given by
_ 6, 6, 6, -6, .

E'= -6, -6; 6p O, (6)
-6; 0, -6, 6

and @ is a 3 x 3 skew-symmeclric matrix given by
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where u,, u,, and u, are the coordinates of the generic point P with respect to the body axes,
in the deformed configuration.

The deformation vector u} can be expressed in terms of the nodal deformations by using
a finite element discretization scheme

uj =N g} (®)
where N’ is the shape function matrix and q f‘ is the nodal deformation vector. Since the shape
function matrix is time-invariant, the time derivative of the deformation vector becomes

7 =N q; ©)
where q} is the time derivative of the vector of nodal deformations. Substituting Egs. (5) and

(9) into Eq. (4), we obtain the following expression for the velocity vector in terms of the rigid
body coordinates and nodal deformation coordinates:

F=R -2A"0 E 6 +A' N g} (10)

Using Eq. (10) to describe the velocity vector of an arbitrary point P, the kinetic energy
of body i can be expressed in the following quadratic form in velocities
1 Tepir.r) |MRR MRe Mas CRY
KE'=< [R 0 qu] Mgz mgp Mg | |6 (11)
Myp Mge Mgy | |0r

where the constant submatrices mgg and my, represent the total mass of the body and the con-
sistent finite element mass matrix, respectively. The submatrix mgq represents the moment of
inertia of the dcformable body about the origin of the body axes, and the submatrix mg,
represents the first moment of mass of the deformable body about the body axes. The subma-
trices myz and m;q represent the kinematic coupling between the rigid body coordinates and
the nodal deformation coordinates.
The potential energy due to linear elastic strains in the material can be expressed in the
following quadratic form in rigid body coordinates and nodal deformation coordinates
00 0| |R

PEi =1 [RTeTq,T]‘ 00 0| |0 (12)
2 00 k| |ar

where kg is the conventional finite element stiffness matrix. The singularity of the stiffness
matrix can be eliminated by imposing appropriate boundary conditions or by choosing vibra-
tion modes that are consistent with the boundary conditions.

2.1. Equations of Motion

In order to unify the equations formulated in rigid body dynamics and structural dynam-
ics, we make use of generalized coordinates which include rigid body coordinates and deforma-
tion coordinates, hence

[r] i
g=|0 =[q’] (13)
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where q' is the vector of generalized coordinates for body i, q,i and q} are the rigid body
coordinates and nodal deformation coordinates of body i, respectively. The kinetic energy of
the body can therefore be expressed by

KEi =% qT M § (14)

where M’ is the overall mass matrix of body ¢. Similarly, the potential energy of the body due
to linear elastic deformation can be expressed by

PE =% 4T K ¢ (15)

where K' is the overall stiffness matrix of body .

When reference coordinates such as those described in this paper are employed in multi-
body systems, the generalized coordinates are not independent because the motion of specific
points in different bodies are related according to the type of mechanical joint that connects the
contiguous bodies. Moreover, in flexible mechanical systems, the deformation of a component
affects the configuration of adjacent components. The interdependence of the generalized coor-
dinates are expressed by a vector of kinematic constraint equations, such as

®(q.1) =0 (16)

two flexible planar bodies i and J at points P and Q shown in Fig. 2, two constraint equations
corresponding to the constraint condition that requires points P and Q to be coincident can be
written as

[Ri+ a7 up] - R+ a7 ug]) =0 (17)

In gencral, holonomic constraints can also be explicit functions of time as well as generalized
coordinates, as in the case of imposing the coordinates of the end-effector to follow a desired
trajectory.

Using Lagrange’s equations for a system with constrained coordinates, the system equa-
tions of motion will take the form

M@)G+Cq+Kq+®lA=Q,+Q,qq (18)

where M, C and K are the System mass, system damping and system stiffness matrices,
respectively, A is the vector of Lagrange multipliers associated with the constraints, @, is the
constraint Jacobian matrix, Q, is the vector of applied external forces, and Q, is the quadratic
velocity vector. The quadratic velocity vector contains the centrifugal forces and Coriolis
forces that result from the differentiation of the kinetic energy expression with respect to the
generalized coordinates.

In a forward dynamic analysis, i.e., finding the resulting motion given the applied joint
forces and external forces, Egs. (16) and (18) form a mixed system of differential-algebraic
equations (DAE's) that have 1o be solved simultaneously. The solution to the inverse dynam-
ics problem requires a forward dynamic analysis within an iteration process. We solve the for-
ward dynamics problem by using the augmented Lagrangian penalty formulation [8). The aug-
mented Lagrangian penalty formulation obviates the need to solve a mixed set of differential-
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algebraic equations and does not increase the number of equations to account for the con-
straints. Applying the dugmented Lagrangian penalty formulation to Egs. (16) and (18) will
result in the following equation:

A,,:,:Z,,'+a[ff>+2umé+u)2<b] (20)

2.2. Inverse Kinematics and Inverse Dynamics

In partitioned form Eq. (18) can be written as
Mge Mgy My R 00 0o R 00 0 R o R W
Mgz Mgg My, 8+ |0 0 0 01+ (0 0 0 0|+ ¢°T A= Q,g + Q,o (2])
H'l/k Mey m,, "-i/ 00 Crr (.]/ 0o kff q ¢,§, Qc/ Qv/
The second set of equations in Eq. (21) can be rearranged to express the extemally applied
joint forces as
Q.o=mgz; R+ myg 0 + my Gy +Dg A-Q,, (22)

Eq. (22) is the inverse dynamics equation that yields the joint forces (torques) necessary for the
cnd-point to follow a prescribed trajectory. In order to obtain Q. o the nodal acceleration vector
Eif is needed. This vector can be obtained from the third set of equations in Eq. (21), which
can be written as

The linearized form of Eq. (23) makes the nonlinear inversion problem amenable to successive
linear inversion techniques. The vector of applied nodal forces Q.; can be expressed in lerms
of the externally applied torques through the following mapping:

Qef = Gf Qee (24)

where in the planar case, the matrix G, is a constant matrix which maps the extemally applied
torques to the vector of externally applied nodal forces. Substituting Eqs. (22) and (24) into
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Eq. (23) results in

M 4 + ¢ qr + kg qr =G, mg; q; + Fy(Aq,.q, .4, 4y .q5) (25)
where F, is a force vector that includes the inertial terms, reaction terms between contiguous
bodies, and quadratic velocity terms.

The inertial coupling submatrix mg, can be decomposed into a sum of a time-invariant
matrix and a time-varying matrix

My, = Mg + Mg, (26)

where mg, and méf arc the time-invariant part and time-varying part of My, , respectively.
This decomposition is essential for the iteration process needed to obtain the solution as
explained below. Substituting Eq. (26) into Eq. (25), we obtain the inverse kinematics equa-
tion of motion for the nodal displacements q:

my; 4 + ¢y qs +k; q; =F(rq,.q,.q, Qs Q7 .95 ) 27
where

The problem statement for the inverse kinematics is that of finding the intemnal states qr
so that the end-point coordinates characterized by a subset of the rigid body coordinates q, fol-
low a prescribed trajectory. The mass matrix m;f is nonsymmetric and it is precisely the non-
symmetry of the mass matrix that produces internal states which are non-causal with respect to
the end-point motion. Eq. (27) is a nonlinear differential equation in the variable qs. As
explained below, Eq. (27) is solved iteratively in the frequency domain to yield the nodal
deformation vector q ; that is non-causal with respect to the end-point motion.

In the frequency domain, Eq. (27) can be written as a set of complex equations for a par-
ticular frequency ®

. 1 1 e —
— ¢ -—k =F 29
Mgy + w = g (®) = F(®) (29)

where iif(m) is the Fourier lransfom‘!. of iif (t) and F(m) is the Fourier transform of F(z). Eq.
(29) is based on the assumption that q, (t) and F(¢) are Fourier transformable. This assun}ption
is valid for slewing motions which are from rest to rest. The nodal acceleration vector q; (@)
can be obtained directly from Eq. (29) for each frequency ®. The leading matrix of Eq. (29) is
a complex regular matrix that is invertible for all frequencies except for @ = 0. However, for
® =0, the system undergoes a rigid body motion determined only by the invertible mass
matrix mf‘f. The nodal accelerations in the time domain may be obtained through the applica-
tion of the inverse Fourier transform, i.e.,

qs () = —2]; f {i/(lb) e'™ dw (30)

Once the non-causal nodal accelerations are known, Eq. (22) can be used to explicitly
compute the non-causal inverse dynamics joint efforts that will move the end effector accord-
ing to a desired trajectory. We note, however, that the inverse dynamics torque and internal
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states given by Egs. (22) and (27), respectively, depend on the Lagrange multipliers and rigid
body coordinates, which in turn depend on the internal states and the applied torque. Moreover,
the rigid body coordinates and Lagrange multipliers are different from their nominal values
when the components of the multibody system are flexible. Therefore, a forward dynamic
analysis is required to obtain an improved estimate of the generalized coordinates and Lagrange
multipliers given the torques computed previously using nominal values of rigid body coordi-
nates and Lagrange multipliers. In order to ensure that the iteration process converges to obtain
the joint efforts that will cause the end-effector to follow the desired trajectory, the forward
dynamics analysis is carried out with the additional constraint that the coordinates of the end-
point follow the desired trajectory. These additional constraints have corresponding Lagrange
multipliers which act as corrccting terms to the joint efforts that have been previously calcu-
lated.

To summarize, the procedure for obtaining the inverse dynamics solution for flexible mul-
tibody systems involve the following steps:

Algorithm:

1. Perform a rigid body inverse dynamic analysis to obtain the nominal
values of the rigid body coordinates q, and Lagrange multipliers A.

2. Solve the inverse kinematics equation represented by Eq. (27)
to obtain the time-delayed nodal accelerations q, .

3. Compute the inverse dynamics joint efforts Q,q using Eq. (22).

4. Perform a forward dynamic analysis using Eq. (19) to obtain new
values for the generalized coordinates and Lagrange multipliers.

5. Repeat steps 2 through 4 until convergence in the inverse dynamics
torques is achieved.

3. Simulation Results

We present in this scction the results of numerical simulations that verify the procedure
discusscd above. First, we apply the global Lagrangian approach to an open-chain flexible mul-
tibody system and comparc the results with those obtained by the recursive Newton-Euler
mcthod [5] to test the validity of the proposed procedure. Next, we present the results of the
application of the global Lagrangian approach to a closed-chain flexible multibody system to
determine the inverse dynamics torque that will produce the desired motion at the end effector.

3.1. Open-Chain Multibody System

Fig. 3 shows a two-link flexible multibody system in the horizontal plane. The end-point
of the second link is specified to move along the x-axis according to the acceleration profile
described by Fig. 5, which corresponds to an end-point displacement of 0.483 meters along the
x-axis. The geometric and material properties of the links are:
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First Link;

Length: 0.66 m

Cross-section area: 1.2 x 1074 m?2

Cross-section moment of inertia: 2.3 x 1010 m?
Second Link:

Length: 0.66m

Cross-section area: 4.0 x 1075 m?

Cross-section moment of inertia: 8.5 x 10~12 py 4

The two links share the following properties:

Young’s modulus: 14 GPa
Mass density: 2715 kg /m3

Length: 0.60 m

Cross-section area: 4.0 x 10~5 2

Cross-section moment of inertia: 8.5 x 10712 py ¢
Young’s modulus: 14 GPa

Mass density: 2715 kg /m?>

shows the inverse dynamic torque profile at joint 3 superimposed with the corresponding rigid
body inverse dynamics torque profile. Again, the time delay due 1o the noncausality of the
solution is seen in this figure.

Fig. 11 shows the elastic angular rotation at the base of the first link obtained by a feed-
forward of the inverse dynamics torque. Superimposed in the same figure is the corresponding
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residual angular rotations. As a matter of fact, it has been observed in the simulations that the
rigid body torques produced residual vibration in all the nodal deformations while the inverse
dynamics torques eliminated the residual oscillation. Furthermore, the inverse dynamics torques
produced nodal deformations which exhibit non-causal characteristics with respect to the end-
point motion. Fig. 12 shows a comparison of the vertical tip error at joint 5 obtained by a
feedforward of the inverse dynamics torque with the tip error resulting from a feedforward of
the rigid body torque. This figure shows that the inverse dynamics torque provides an excel-
lent tracking of the desired end effector trajectory whereas the rigid body torque again induces
substantial vibration on the end-point motion.

4. Conclusion

A global Lagrangian approach for the inverse dynamics of flexible multibody systems has
been presented. The procedure is capable of solving for the inverse dynamics torque profiles of
both open-chain and closed-chain flexible multibody systems in a unified and systematic
manner. The method is found to produce an excellent tracking of the desired trajectory of the
end effector. In a future paper, we will address the inverse dynamics problem for flexible mul-
tibody systems undergoing motion in three dimensions. New problems arise in the three-
dimensional case, since the actuating torque vectors have directions which are time-varying and
nonlinear functions of the rigid body coordinates, as contrasted with the planar case where the
applied torque vectors have directions fixed perpendicular to the plane of the multibody system.
In addition, to be able to perform the inverse kinematics and inverse dynamics analyses, addi-
tional actuation at the joints may be necessary.
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Fig. 1: Reference coordinates for planar body i

X

Fig. 2: A pair of flexible planar bodies
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Fig. 3: Two-Link Open-Chain Flexible Multibody System
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Fig.4: Closed-Chain Flexible Multibody System
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Fig. 5: end—point acceleration along the x-—axis
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Fig. 6: inverse dynamics and rigid torque at base motor
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Fig. 7. inverse dynamics and rigid torque at elbow motor
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Joint 5 acceleration (vm/sz)
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Fig. 8: end-point acceleration along the x- and y— axes
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Fig. 9: inverse dynamics torque and rigid torque at joint 1
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Fig. 10: inverse dynamics torque and rigid torque at joint 3
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Fig. 11: elastic rotation: inverse dynamics vs. rigid torques

0002 -t T ¥ ¥ T T ¥ T T T U T T T T T
[ I i I I ]
: N\
0.001 [ AV ]
r ! /\ /\ J
0.000 | 5 R S A Y
: \ VRV
~0.001 | AN =
-0.002 |- VARY, E
00030 L

-0.0 0.5 1.0 1.5 2.0
Time (sec.)

Fig. 12: vertical tip error: inverse dynamics vs. rigid torques
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